题目内容
【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.
【答案】
(1)解:在△ABC中,∵cosBcosC﹣sinBsinC= ,
∴cos(B+C)= ,
又∵0<B+C<π,
∴B+C= ,
∵A+B+C=π,
∴A=
(2)解:由余弦定理a2=b2+c2﹣2bccosA,
得(2 )2=(b+c)2﹣2bc﹣2bccos ,
把b+c=4代入得:12=16﹣2bc+bc,
整理得:bc=4,
则△ABC的面积S= bcsinA= ×4× =
【解析】(1)已知等式左边利用两角和与差的余弦函数公式化简,求出cos(B+C)的值,确定出B+C的度数,即可求出A的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a与b+c的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC面积.
练习册系列答案
相关题目
【题目】山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的调查,其结果(人数分布)如表:
学历 | 35岁以下 | 3550岁 | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分层抽样的方法在岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;
(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中35岁以下48人,50岁以上10人,再从这个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求、的值.