题目内容
在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐
(2,2),
解析
(1)(坐标系与参数方程选做题)在极坐标系中,定点,点在直线上运动,当线段最短时,点的极坐标为 .
已知曲线C: (t为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数).若直线与圆相切,求实数的值.
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为() (Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(I)将曲线C的极坐标方程和直线参数方程转化为普通方程;(II)若直线l与曲线C相交于A、B两点,且,试求实数值.
将参数方程(t为参数)化为普通方程.
已知两曲线参数方程分别为(0≤θ<π)和(t∈R),求它们的交点坐标.