题目内容

【题目】已知长方体ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,则异面直线BD1与AC所成角的余弦值为

【答案】
【解析】解:建立如图坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,
∴D1(0,0,5),B(3,4,0),
A(3,0,0),C(0,4,0),
=(﹣3,﹣4,5), =(﹣3,4,0).
∴cos< >= =﹣
∴AC与BD1所成角的余弦值
所以答案是:

【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网