题目内容

若函数f(x)=sin(ωx+φ)(ω>0,且|φ|<
π
2
)
,在区间[
π
6
3
]
上是单调减函数,且函数值从1减少到-1,则f(
π
4
)
=______.
由题意可得,函数的周期为 2×(
3
-
π
6
)=π,即
ω
=π,∴ω=2,
∴f(x)=sin(2x+φ).
再由sin(2•
π
6
+φ)=1,|φ|<
π
2
 可得 φ=
π
6

∴f(x)=sin(2x+
π
6
),
f(
π
4
)
=sin(
π
2
+
π
6
)=cos
π
6
=
3
2

故答案为
3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网