题目内容

设函数f(x)=
ax2+bx+c
(a<0)的定义域为D,值域为A.
(1)若a=-1,b=2,c=3,则D=
[-1,3]
[-1,3]
,A=
[0,+∞)
[0,+∞)

(2)若所有点(s,t)(s∈D,t∈A)构成正方形区域,则a的值为
-4
-4
分析:(1)将a,b及c的值代入f(x)解析式,求出定义域与值域即可;
(2)由所有的点(s,f(t))(s,t∈D)构成一个正方形区域知,函数的定义域与值域的区间长度相等,利用二次函数的最值与二次方程的根,建立a,b,c关系式,求得答案.
解答:解:(1)将a=-1,b=2,c=3代入得:f(x)=
-x2+2x+3
≥0,即A=[0,+∞);
∵-x2+2x+3≥0,即(x-3)(x+1)≤0,
解得:-1≤x≤3,即D=[-1,3];
(2)设函数u=ax2+bx+c与x轴的两个交点的横坐标为:x1,x2,x1<x2
∵s为定义域的两个端点之间的部分,
就是[x1,x2]f(t)(t∈D)就是f(x)的值域,也就是[0,f(x)max],
且所有的点(s,f(t))(s,t∈D)构成一个正方形区,
∴|x1-x2|=
umax

∵|x1-x2|=
2
b2-4ac
2a
=
4ac-b2
4a

b2-4ac
a2
=
4ac-b2
4ac

∴a=-4.
故答案为:(1)[0,+∞);[-1,3];(2)-4
点评:此题考查了一元二次方程的解法,以及函数的值域,弄清题意是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网