题目内容

a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[0,
π
2
],求x的值;
(2)若函数g(x)=cos(ωx-
π
3
)+k
(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.
(1)f(x)=
a
b
=2cos2x+
3
sin2x
=1+cos2x+
3
sin2x
=2sin(2x+
π
6
)+1
…(3分)
由f(x)=0得2sin(2x+
π
6
)+1
=0
sin(2x+
π
6
)=-
1
2

∵x∈[0,
π
2
]∴2x+
π
6
∈[
π
6
6
]

2x+
π
6
=
6

x=
π
2
…(6分)
(2)由(1)知T=π∴ω=
π
=2
…(8分)g(
π
6
)=cos(
π
3
-
π
3
)+k=2
∴k=1…(10分)
∴g(x)=cos(2x-
π
3
)+1
cos(2x-
π
3
)∈[-1,1]

∴g(x)的值域为[0,2],单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈z)
.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网