题目内容

【题目】设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是

【答案】(﹣2,0)∪(2,+∞)
【解析】解:设g(x)= ,则g(x)的导数为:
g′(x)=
∵当x>0时总有xf′(x)﹣f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(﹣x)= = = =g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(﹣2)= =0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,
∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).
故答案为:(﹣2,0)∪(2,+∞).
构造函数g(x),利用g(x)的导数判断函数g(x)的单调性与奇偶性,求出不等式的解集即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网