题目内容
11.在(x2+x+1)5的展开式中,x5的系数是51.分析 先求得[(x2+x)+1)]5的展开式的通项公式,再求出(x2+x)5-r 的展开式的通项公式,可得x5的系数.
解答 解:(x2+x+1)5=[(x2+x)+1)]5的展开式的通项公式为 Tr+1=${C}_{5}^{r}$•(x2+x)5-r,r=0,1,2,3,4,5,
而(x2+x)5-r 的展开式的通项公式为 Tr′+1=${C}_{5-r}^{r′}$•(x2)5-r-r′•xr′=${C}_{5-r}^{r′}$•x10-2r-r′,
0≤r′≤5-r,故有$\left\{\begin{array}{l}{r=0}\\{r′=5}\end{array}\right.$,或$\left\{\begin{array}{l}{r=1}\\{r′=3}\end{array}\right.$,或 $\left\{\begin{array}{l}{r=2}\\{r′=1}\end{array}\right.$.
故 x5的系数为 ${C}_{5}^{0}$•${C}_{5}^{5}$+${C}_{5}^{1}$•${C}_{4}^{3}$+${C}_{5}^{2}$•${C}_{3}^{1}$=1+20+30=51,
故答案为:51.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.
练习册系列答案
相关题目
2.等差数列{an}的前k项和为28,前2k项和为76,则它的前3k项和为( )
| A. | 104 | B. | 124 | C. | 134 | D. | 144 |
19.已知函数y=f(x-1)的图象关于点(1,0)成中心对称,且当(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),$b=({log_9}3)•f({log_9}3),c=({log_3}\frac{1}{9})•f({log_3}\frac{1}{9})$,则a、b、c的大小关系是( )
| A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | a>c>b |
3.P是△ABC内一点,△ACP,△BCP的面积分别记为S1,S2,已知$\overrightarrow{CP}=\frac{3λ}{4}\overrightarrow{CA}+\frac{λ}{4}\overrightarrow{CB}$,其中λ∈(0,1),则$\frac{S_1}{S_2}$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |