题目内容

11.在(x2+x+1)5的展开式中,x5的系数是51.

分析 先求得[(x2+x)+1)]5的展开式的通项公式,再求出(x2+x)5-r 的展开式的通项公式,可得x5的系数.

解答 解:(x2+x+1)5=[(x2+x)+1)]5的展开式的通项公式为 Tr+1=${C}_{5}^{r}$•(x2+x)5-r,r=0,1,2,3,4,5,
而(x2+x)5-r 的展开式的通项公式为 Tr′+1=${C}_{5-r}^{r′}$•(x25-r-r′•xr′=${C}_{5-r}^{r′}$•x10-2r-r′
0≤r′≤5-r,故有$\left\{\begin{array}{l}{r=0}\\{r′=5}\end{array}\right.$,或$\left\{\begin{array}{l}{r=1}\\{r′=3}\end{array}\right.$,或 $\left\{\begin{array}{l}{r=2}\\{r′=1}\end{array}\right.$.
故 x5的系数为 ${C}_{5}^{0}$•${C}_{5}^{5}$+${C}_{5}^{1}$•${C}_{4}^{3}$+${C}_{5}^{2}$•${C}_{3}^{1}$=1+20+30=51,
故答案为:51.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网