题目内容
6.已知数列{an}满足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,则数列{an}的通项公式为an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.分析 由已知得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{{2}^{n-1}}$,由此利用累乘法能求出数列{an}的通项公式.
解答 解:∵数列{an}满足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{{2}^{n-1}}$,
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=1×$\frac{1}{2}$×$\frac{1}{{2}^{2}}×$…×$\frac{1}{{2}^{n-1}}$
=$\frac{1}{{2}^{1+2+3+…+(n-1)}}$
=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.
故答案为:${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.
点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累乘法的合理运用.
练习册系列答案
相关题目
14.条件甲:“a>0”是条件乙:“使得ax2-ax+1>0对一切x恒成立的a的取值范围”的( )条件.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
1.设$0≤x≤\frac{π}{4}$,则$\sqrt{1-2sinxcosx}$=( )
| A. | cosx-sinx | B. | sinx-cosx | C. | cosx+sinx | D. | -cosx-sinx |
18.过点(-1,0)且与直线x-2y-2=0平行的直线方程是( )
| A. | 2x-y+2=0 | B. | 2 x+y+2=0 | C. | x-2y+1=0 | D. | x+2y-1=0 |
15.已知Sn为数列{an}的前n项和,若an(4+cosnπ)=n(2-cosnπ),S2n=an2+bn,则ab等于( )
| A. | $\frac{6}{25}$ | B. | $\frac{16}{25}$ | C. | $\frac{21}{25}$ | D. | $\frac{24}{25}$ |