题目内容
已知函数,.
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若对,恒成立,求实数的取值范围;
(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数、,有.
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若对,恒成立,求实数的取值范围;
(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数、,有.
(1);(2);(3)详见解析.
试题分析:(1)先求导,利用题中条件得到,从而求出实数的值;(2)解法一是构造新函数,问题转化为来处理,求出导数的根,对与区间的相对位置进行分类讨论,以确定函数的单调性与最值,从而解决题中的问题;解法二是利用参数分离法将问题转化为,从而将问题转化为来处理,而将视为点与点连线的斜率,然后利用图象确定斜率的最小值,从而求解相应问题;(3)证法一是利用基本不等式证明和,再将三个同向不等式相加即可得到问题的证明;证法二是利用作差法结合基本不等式得到进而得到问题的证明.
试题解析:(1),由曲线在点处的切线平行于轴得
,;
(2)解法一:当时,,函数在上是增函数,有,------6分
当时,函数在上递增,在上递减,
对,恒成立,只需,即;
当时,函数在上递减,对,恒成立,只需,
而,不合题意,
综上得对,恒成立,;
解法二:由且可得,
由于表示两点、的连线斜率,
由图象可知在单调递减,
故当,,
,即;
(3)证法一:由,
得
,
,
由得,①
又,
,②
,,
,,③
由①、②、③得
;
即;
证法二:由
、是两个不相等的正数,
,,
,又,,
,即
练习册系列答案
相关题目