题目内容

19.已知等差数列{an}的前n项和为Sn,且a3=5,S8=64,
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*).

分析 (1)设等差数列{an}的首项为a1、公差为d,利用a3=5、S8=64计算即得结论;
(2)通过数列{an}的首项为1,公差为2可得Sn=n2,从而不等式成立等价于3n2>1,而3n2>1在n≥1时恒成立,即得结论.

解答 (1)解:设等差数列{an}的首项为a1,公差为d,
则$\left\{\begin{array}{l}{{a}_{3}={a}_{1}+2d=5}\\{{S}_{8}=8{a}_{1}+28d=64}\end{array}\right.$,
解得:a1=1,d=2,
∴数列{an}的通项an=1+2(n-1)=2n-1;
(2)证明:∵数列{an}的首项为1,公差为2,
∴Sn=n+2×$\frac{n(n-1)}{2}$=n2
要证:$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*),
即证:$\frac{1}{(n-1)^{2}}$+$\frac{1}{(n+1)^{2}}$>$\frac{2}{{n}^{2}}$,
只需证:[(n+1)2+(n-1)2]n2>2(n2-1)2
只需证:(n2+1)n2>(n2-1)2
只需证:3n2>1,
而3n2>1在n≥1时恒成立,并且以上每步均可逆,
从而不等式$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*)恒成立.

点评 本题考查求数列的通项,考查关于数列和的不等式恒成立问题,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网