题目内容
数列
的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,且
,求证:对任意实数
是常数,
和任意正整数
,总有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458357380.gif)
(3)正数数列
中,
求数列
中的最大项.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457921263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457936220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457983192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457999383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458092435.gif)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457921263.gif)
(2)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458170263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457983192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458264211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458279523.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458295351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458311391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457983192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458357380.gif)
(3)正数数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458373256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458389639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458373256.gif)
(1)
(2)略(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458467290.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231414584511372.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458467290.gif)
(1)由已知,对于任意
,总有
①成立
所以
②…………(1分)
①-②得,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458529590.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458701697.gif)
均为正数,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458732548.gif)
数列
是公差为1的等差数列…………(3分)
又
时,
,解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458841244.gif)
…………(5分)
(2)证明:
对任意实数
是常数,
和任意正整数
,总有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458279523.gif)
,…………(6分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231414589811101.gif)
…………(9分)
(3)由已知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459137800.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459153801.gif)
易得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459169405.gif)
猜想
时,
是递减数列…………(10分)
令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459215413.gif)
则
,
当
时,
则
,
在
内,
为单调递减函数,…………(12分)
由
知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459465640.gif)
时,
是递减数列,即
是递减数列,…………(13分)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459512259.gif)
数列
中的最大项为
.…………(14分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457999383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458498472.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458513520.gif)
①-②得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458529590.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458701697.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458716394.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458732548.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458747128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457921263.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458779232.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458794464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458841244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458857539.gif)
(2)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458857183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458295351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458311391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141457983192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458279523.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458935281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231414589811101.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231414591221047.gif)
(3)由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459137800.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459153801.gif)
易得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459169405.gif)
猜想
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459184244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458373256.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459215413.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459231593.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458857183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459325237.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459340291.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459340518.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458747128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459403413.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459418270.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458389639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459465640.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459481257.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459481306.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458373256.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141459512259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458747128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458373256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141458467290.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目