题目内容
【题目】集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a,b,c}的不同分拆种数为多少?
【答案】27种
【解析】
试题考虑集合A1为空集,有一个元素,2个元素,和集合A相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;总之,共27种拆法.
解:当A1=φ时,A2=A,此时只有1种分拆;
当A1为单元素集时,A2=AA1或A,此时A1有三种情况,故拆法为6种;
当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;
当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;
综上,共27种拆法.
练习册系列答案
相关题目