ÌâÄ¿ÄÚÈÝ
19£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔÖ±½Ç×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôP£¨x£¬y£©ÊÇÖ±ÏßlÓëÇúÏßCµÄÄÚ²¿µÄ¹«¹²µã£¬Çóx-yµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©ÔËÓÃx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¦Ñ2=x2+y2£¬»¯¼«×ø±ê·½³ÌΪÆÕͨ·½³Ì£»
£¨¢ò£©ÓɵãPÔÚÔ²ÄÚ£¬´úÈëÔ²µÄ·½³Ì£¬¿ÉµÃtµÄ·¶Î§£¬ÔÙÓɲ»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½x-yµÄ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©¡ß¦Ñ=2sin¦È£¬¡à¦Ñ2=2¦Ñsin¦È£¬
¡àx2+y2=2y£¬¼´x2+£¨y-1£©2=1£¬
ËùÒÔÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-1£©2=1£®¡¡¡¡¡¡
£¨¢ò£©¡ßx-y=$\frac{3}{5}$t-£¨1+$\frac{4}{5}$t£©=-$\frac{1}{5}$t-1£¬
ÓÉPÔÚÔ²ÄÚ£¬¿ÉµÃ£¨$\frac{3}{5}$t£©2+£¨$\frac{4}{5}$t£©2£¼1£¬
½âµÃ-1£¼t£¼1£¬
¡à-$\frac{1}{5}$£¼-$\frac{1}{5}$t£¼$\frac{1}{5}$£¬¡à-$\frac{6}{5}$£¼-1-$\frac{1}{5}$t£¼-$\frac{4}{5}$£¬
¼´x-yµÄ·¶Î§ÊÇ£¨-$\frac{6}{5}$£¬-$\frac{4}{5}$£©£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍ¼«×ø±ê·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Ö÷Òª¿¼²éµãºÍÔ²µÄλÖùØϵ£¬ÒÔ¼°²»µÈʽµÄÐÔÖʵÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÉèÖ±Ïßl1£¬l2µÄбÂʺÍÇãб½Ç·Ö±ðΪk1£¬k2ºÍ¦È1£¬¦È2£¬Ôò¡°k1£¾k2¡±ÊÇ¡°¦È1£¾¦È2¡±µÄ£¨¡¡¡¡£©
A£® | ±ØÒª²»³ä·ÖÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
10£®sin£¨-$\frac{23¦Ð}{6}$£©=£¨¡¡¡¡£©
A£® | $-\frac{{\sqrt{3}}}{2}$ | B£® | $-\frac{1}{2}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
4£®${¡Ò}_{0}^{1}$£¨$\sqrt{1-{x}^{2}}$-x£©dxµÈÓÚ£¨¡¡¡¡£©
A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{¦Ð-1}{4}$ | D£® | $\frac{¦Ð-2}{4}$ |