题目内容

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于 [1,2], [0,1],使成立,求实数的取值范围.

(1);(2)单调增区间为;单调减区间为;(3)b的取值范围是

解析试题分析:(1)由函数时,首先求出函数的定义域.再通过求导再求出导函数当时的导函数的的值即为切线的斜率.又因为过点则可求出在的切线方程.本小题主要考查对数的求导问题.
(2)当时通过求导即可得,再求出导函数的值为零时的x值.由于定义域是x大于零.所以可以根据导函数的正负值判断函数的单调性.
(3)由于在(2)的条件下,设函数,若对于 [1,2], [0,1],使成立.等价于上的最小值要大于或等于上的最小值.由于是递增的所以易求出最小值.再对中的b进行讨论从而得到要求的结论.
试题解析:函数的定义域为,                      1分
                                 2分
(1)当时,,       3分

,                                           4分
处的切线方程为.                    5分
(2) .
,或时, ;                             6分
时, .                                        7分
时,函数的单调增区间为;单调减区间为.   8分
(如果把单调减区间写为,该步骤不得分)
(3)当时,由(2)可知函数上为增函数,
∴函数在[1,2]上的最小值为              9分
若对于[1,2],成立上的最小值不大于在[1,2]上的最小值(*)            

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网