题目内容

17.解不等式:$\frac{2x+1}{x-2}$>0.

分析 将原不等式转化为$\left\{\begin{array}{l}{2x+1>0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x+1<0}\\{x-2<0}\end{array}\right.$,由一次不等式的解法,即可得到所求解集.

解答 解:不等式:$\frac{2x+1}{x-2}$>0即为
$\left\{\begin{array}{l}{2x+1>0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x+1<0}\\{x-2<0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x>-\frac{1}{2}}\\{x>2}\end{array}\right.$或$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{x<2}\end{array}\right.$,
解得x>2或x<-$\frac{1}{2}$,
则解集为(-∞,-$\frac{1}{2}$)∪(2,+∞).

点评 本题考查分式不等式的解法,考查符号法的运用,注意转化思想的运用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网