题目内容
19.已知x=27,y=64.化简并计算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.分析 化简表达式,代入x,y的值,求解即可.
解答 解:x=27,y=64.
$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$=$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{\frac{5}{24}{x}^{-\frac{2}{3}}{y}^{\frac{1}{3}}}$=${24y}^{\frac{1}{6}}$=24×${2}^{6×\frac{1}{6}}$=48. …(8分).
点评 本题考查函数值的求法,考查计算能力.
练习册系列答案
相关题目
10.设a>0,b>0若$\sqrt{{3}^{5}}$是3a与3b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为( )
A. | $\frac{8}{3}$ | B. | $\frac{4}{5}$ | C. | 4 | D. | $\frac{1}{4}$ |
7.已知f(3${\;}^{{x}^{2}-1}$)的定义域是[-1,1],则f(log3x)的定义域是( )
A. | (0,$\root{3}{3}$) | B. | [$\root{3}{3}$,3] | C. | [3,+∞) | D. | (0,3] |
14.已知f(x)是R上的奇函数,且当x>0时f(x)=x(1-x),则当x<0时f(x)的解析式是f(x)=( )
A. | -x(x-1) | B. | -x(x+1) | C. | x(x-1) | D. | x(x+1) |
8.若对任意的实数x,都有acosx-bsinx=1,则( )
A. | $\frac{1}{a^2}+\frac{1}{b^2}$≥1 | B. | $\frac{1}{a^2}+\frac{1}{b^2}$≤1 | C. | a2+b2≥1 | D. | a2+b2≤1 |