题目内容
(本小题满分16分)已知二次函数g(x)对任意实数x都满足
,且
.令
.
(1)求 g(x)的表达式;
(2)若
使
成立,求实数m的取值范围;
(3)设
,
,证明:对
,恒有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313517553.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313330664.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313345407.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313423996.gif)
(1)求 g(x)的表达式;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313439248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313455313.gif)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313470388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313486602.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313501493.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313517553.gif)
(1)
.(2)实数m的取值范围
.(3)同解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313564570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313735540.gif)
(1)设
,于是
所以
又
,则
.所以
. ……………………4分
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403138451433.gif)
当m>0时,由对数函数性质,f(x)的值域为R;
当m=0时,
对
,
恒成立; ……………………6分
当m<0时,由
,列表:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314016989.gif)
………8分
所以若
,
恒成立,则实数m的取值范围是
.
故
使
成立,实数m的取值范围
.……………… 10
(3)因为对
,
所以
在
内单调递减.
于是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403146251095.gif)
………………… 12分
记
,
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403147181037.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313751531.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313767914.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313782520.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313345407.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313813274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313564570.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403138451433.gif)
当m>0时,由对数函数性质,f(x)的值域为R;
当m=0时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313860511.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313876355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313891307.gif)
当m<0时,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313907685.gif)
x | ![]() | ![]() | ![]() |
![]() | - | 0 | + |
![]() | 减 | 极小 | 增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314016989.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403140321460.gif)
所以若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313876355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313891307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314453272.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313439248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313455313.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140313735540.gif)
(3)因为对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314562453.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314578718.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314593260.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314609367.gif)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403146251095.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403146401544.gif)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140314656843.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231403147181037.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目