题目内容
设
是公比大于1的等比数列,Sn为数列
的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列
的通项公式;
(2)令
,求数列
的前n项和Tn.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442203419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442203419.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442203419.png)
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442265814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442375440.png)
(Ⅰ)设数列
的公比为
,
由已知,得
, ……………………………………2分
即
, 也即 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442468478.png)
解得
……………………………………………………5分
故数列
的通项为
. ……………………………………6分
(Ⅱ)由(Ⅰ)得
, ∴
,……8分
又
,
∴
是以
为首项,以
为公差的等差数列 ………10分
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442811314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442843308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442874466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442889448.png)
即
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442390205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442406239.png)
由已知,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442421542.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442453425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442468478.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442499266.png)
故数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442390205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442687232.png)
(Ⅱ)由(Ⅰ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442702246.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442718403.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442749300.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442765211.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442765249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442796207.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442811314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442843308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442874466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442889448.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442905348.png)
分析:(1)由{an}是公比大于1的等比数列,S
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442921240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443014195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443030240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442921240.png)
(2)由b
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443108357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
解答:解:(1)由已知得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442421542.png)
解得a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443030240.png)
设数列{a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443030240.png)
可得a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443014195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443513410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442921240.png)
又S
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194442921240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443513410.png)
即2q
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443607242.png)
解得q
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443014195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443030240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443685338.png)
由题意得q>1,
∴q=2
∴a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443014195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443810292.png)
(2)由于b
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443108357.png)
由(1)得a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443108357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443903311.png)
∴b
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443903311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443950305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
∴{b
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
∴T
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443014195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443030240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194444106735.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194444137893.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194444153700.png)
故T
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194443077240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194444153700.png)
点评:解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式及前n项和公式,然后代入进行运算.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目