题目内容
【题目】如图,已知矩形ABCD中,AB=2,AD=1.将矩形沿对角线BD折起,使A移到点P,P在平面BCD上的投影O恰好落在CD边上.
(1)证明:DP⊥平面BCP;
(2)求点O到平面PBD的距离.
【答案】(1)证明见解析(2)
【解析】
(1)由已知可证BC⊥CD,DA⊥AB,由A点移动到了P点,可证PD⊥PB,过P点作PO⊥CD,利用PO⊥面BCD,可证BC⊥面PCD,利用线面垂直的性质得BC⊥PD,根据线面垂直的判定定理可证PD⊥面PBC.
(2)连接OB,由(1)可知DP⊥PC,可求PC,可证OP⊥CD,由DCPO=DPPC,解得OP,OC的值,可得S△ODB,设点O到平面PBD的距离为h,可得S△DPB=S△ABD=1,根据VP﹣DOB=VO﹣DPB,即可解得h的值.
(1)∵四边形ABCD为矩形,
∴BC⊥CD,DA⊥AB,
∵A点移动到了P点,
∴PD⊥PB,
又∵P点在平面BCD上的射影在CD上,
∴过P点作PO⊥CD,
∴PO⊥面BCD,
∴BC⊥面PCD,可得:BC⊥PD,
∴PD⊥面PBC,
(2)连接OB,由(1)可知DP⊥平面BCP,PC平面BCP,
所以DP⊥PC,
即PC,
由(1)可知OP⊥平面BCD,
而CD平面BCD,
所以OP⊥CD,
由DCPO=DPPC,解得:OP,
所以OC,
可得:OD,BD,sin∠ODB,
可得S△ODBsin∠ODB,
设点O到平面PBD的距离为h,可得S△DPB=S△ABD=1,
因为VP﹣DOB=VO﹣DPB,
所以S△DOBPOS△DPBh,
可得:h,解得h.
即点O到平面PBD.
练习册系列答案
相关题目