题目内容
【题目】已知椭圆的离心率,左、右焦点分别为、,抛物线的焦点恰好是该椭圆的一个顶点.
(1)求椭圆的方程;
(2)已知圆的切线(直线的斜率存在且不为零)与椭圆相交于、两点,那么以为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.
【答案】(1);(2)以为直径的圆过定点.
【解析】
(1)根据抛物线的焦点与椭圆的顶点公式求解即可.
(2) 设直线的方程为,联立直线与椭圆的方程,列出韦达定理,并根据直线与圆相切得出的关系式,代入证明即可.
(1)因为椭圆的离心率,所以,即.
因为抛物线的焦点恰好是该椭圆的一个顶点,
所以,所以.所以椭圆的方程为.
(2)因为直线的斜率存在且不为零.故设直线的方程为.
由消去,得,
所以设,则.
所以.
所以.①
因为直线和圆相切,所以圆心到直线的距离,
整理,得,②
将②代入①,得,显然以为直径的圆经过定点
综上可知,以为直径的圆过定点.
【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏, 从中部选择河北. 湖北,从西部选择宁夏, 从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记. 由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验. 在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 100 | 50 | 150 |
合计 | 140 | 60 | 200 |
(1)写出选择 5 个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)以频率作为概率, 某普查小组从该小区随机选择 1 家企事业单位,3 家个体经营户作为普查对象,入户登记顺利的对象数记为, 写出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |