题目内容
【题目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 、 表示向量 ;
(2)若AD⊥AB,求向量 、 夹角的余弦值.
【答案】
(1)解:∵梯形ABCD,AB∥CD,且AB=AD=2,CD=3,∴ ,
∴ =﹣ + ,∴ =3 ﹣2
(2)解:以D点为原点,以DC所在直线为x轴,以DA所在直线为y轴,建立直角坐标系,
则D(0,0),A(0,2),C(3,0),B(2,2),
∴ =(3,﹣2), =(﹣2,﹣2), =﹣6+4=﹣2,
∴cos< >= = =﹣
【解析】(1)利用两个向量的加减法的几何意义,可得用向量 、 表示向量 的解析式.(2)建立坐标系,根据两个向量坐标形式的运算,以及两个向量的数量积的定义,求得cos< >= 的值.
【考点精析】本题主要考查了数量积表示两个向量的夹角的相关知识点,需要掌握设、都是非零向量,,,是与的夹角,则才能正确解答此题.
练习册系列答案
相关题目