题目内容

已知定点F(1,0),动点P(异于原点)在y轴上运动,连接FP,过点P作PM交x轴于点M,并延长MP到点N,且
(1)求动点N的轨迹C的方程;
(2)若直线l与动点N的轨迹交于A、B两点,若,求直线l的斜率k的取值范围.
【答案】分析:(1)设出动点N,则M,P的坐标可表示出,利用PM⊥PF,kPMkPF=-1,求得x和y的关系式,即N的轨迹方程.
(2)设出直线l的方程,A,B的坐标,根据,推断出x1x2+y1y2=-4进而求得y1y2的值,把直线与抛物线方程联立消去x求得y1y2的表达式,进而气的b和k的关系式,利用弦长公式表示出|AB|2,根据|AB|的范围,求得k的范围.
解答:解:(1)设动点N(x,y),则M(-x,0),P(0,)(x>0),
∵PM⊥PF,∴kPMkPF=-1,即
∴y2=4x(x>0)即为所求.
(2)设直线l方程为y=kx+b,l与抛物线交于点A(x1,y1)、B(x2,y2),
则由,得x1x2+y1y2=-4,即 +y1y2=-4,∴y1y2=-8,
可得 ky2-4y+4b=0(其中k≠0),∴y1y2==-8,b=-2k,
当△=16-16kb=16(1+2k2)>0时,|AB|2=(1+=•[-4y1•y2]=+32).
由题意,得16×6≤•≤16×30,解得
≤k≤1,或-1≤k≤-
即所求k的取值范围是[-1,-]∪[ 1].
点评:本题主要考查了直线与圆锥曲线的综合问题,两个向量的数量的运算,考查运用解析几何的方法分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网