题目内容

已知函数,其中=(
(1)求函数f(x)在[0,π]上的单调递增区间和最小值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=-1,求的值.
【答案】分析:计算向量的数量积,利用二倍角.两角和的正弦函数化简函数f(x)的表达式,得到一个角的一个三角函数的形式;
(1)借助正弦函数的单调增区间,求函数y=f(x)的单调递增区间.借助正弦函数的最值,求出函数y=f(x)的最小值,以及取得最小值时x的值;
(2)通过f(A)的表达式,可求得A的值,再利用正弦定理化简求出表达式的值.
解答:解:(1)函数=
=,所以

所以函数的单调增区间为
∴f(x)min=1-2=-1
(2)∵f(A)=-1,

由正弦定理可知:

所以为2.
点评:本题主要考查二倍角公式、余弦定理和两角和与差的公式的应用.高考对三角函数的考查以基础题为主,但是这部分公式比较多不容易记忆,也为这一部分增加了难度;考查三角函数的单调性,三角函数的最值,考查计算能力,基本知识的灵活运应能力,考查转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网