题目内容
【题目】已知项数为的数列满足如下条件:①;②.若数列满足,其中则称为的“心灵契合数列”.
(I)数列1,5,9,11,15是否存在“心灵契合数列”若存在,写出其心灵契合数列,若不存在请说明理由;
(II)若为的“心灵契合数列”,判断数列的单调性,并予以证明;
(Ⅲ)已知数列存在“心灵契合数列”,且,,求m的最大值.
【答案】(I)不存在,理由见解析;(II)单调递减,证明见解析; (Ⅲ)33
【解析】
(I)求出、、、后,根据“心灵契合数列”的定义判定即可;
(II)由“心灵契合数列”的定义,结合数列单调性讨论的符号即可得解;
(Ⅲ)根据数列及其“心灵契合数列”中项的特征,结合单调性分析出,即可得解.
(I)数列1,5,9,11,15不存在“心灵契合数列”
因为,
,,
,,
所以数列1,5,9,11,15不存在“心灵契合数列”
(Ⅱ)数列为单调递减数列.
因为,,,
又因为,所以有,
所以,
即成立
所以数列为单调递减数列.
(Ⅲ),都有,
因为,.
所以,
所以,
所以
因为,
所以,
又
,
则,即,,所以.
例如:,
此时,,
且为单调递减数列,故满足题意.
所以m的最大值是33.
【题目】某省从2021年开始将全面推行新高考制度,新高考“”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为,,,,,等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法分别转换到、、、、五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:
等级 | |||||
比例 | |||||
赋分区间 |
而等比例转换法是通过公式计算:
其中,分别表示原始分区间的最低分和最高分,、分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为,时,等级分分别为、
假设小南的化学考试成绩信息如下表:
考生科目 | 考试成绩 | 成绩等级 | 原始分区间 | 等级分区间 |
化学 | 75分 | 等级 |
设小南转换后的等级成绩为,根据公式得:,
所以(四舍五入取整),小南最终化学成绩为77分.
已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:
成绩 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人数 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;
(2)从化学成绩获得等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.