ÌâÄ¿ÄÚÈÝ
2£®¸ø³öÏÂÁÐÎå¸öÃüÌ⣺¢Ùº¯Êýf£¨x£©=lg£¨$\sqrt{{x}^{2}+1}$-x£©ÊÇRÉϵÄÆ溯Êý
¢Ú°Ñº¯Êýf£¨x£©=2sin2xͼÏóÉÏÿ¸öµãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ3±¶£¬È»ºóÔÙÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½µÄº¯Êý½âÎöʽ¿ÉÒÔ±íʾΪg£¨x£©=2sin£¨$\frac{1}{2}$x-$\frac{¦Ð}{6}$£©
¢Û»¯¼òsin40¡ã£¨tan10¡ã-$\sqrt{3}$£©µÄ×î¼ò½á¹ûÊÇ1
¢Üº¯Êýf£¨x£©=2cos2x£¬Èôx1£¬x2Âú×㣺¶ÔÈÎÒâx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬Ôò|x1-x2|µÄ×îСֵΪ$\frac{¦Ð}{2}$
¢ÝÒÑÖª¡÷ABCÖУ¬$\overrightarrow{AB}$=£¨cos18¡ã£¬cos72¡ã£©£¬$\overrightarrow{BC}$=£¨2cos63¡ã£¬2cos27¡ã£©£¬Ôò¡ÏB=135¡ã
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ܢݣ¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö ¢Ù¸ù¾ÝÆ溯ÊýµÄ¶¨ÒåµÃµ½£ºf£¨-x£©=-f£¨x£©£»
¢Ú¸ù¾ÝÈý½Çº¯ÊýµÄͼÏó±ä»»½øÐÐÅжϣ»
¢Û¸ù¾ÝÇл¯ÏÒ¡¢Á½½ÇºÍµÄÓàÏÒ¹«Ê½¡¢±¶½ÇµÄÕýÏÒ¹«Ê½ºÍÓÕµ¼¹«Ê½»¯¼ò£»
¢Ü¸ù¾ÝÈý½Çº¯ÊýµÄ¶Ô³ÆÐÔºÍ×îÖµÐÔ½áºÏÈý½Çº¯ÊýµÄÖÜÆÚÐÔ½øÐÐÅжϼ´¿É£»
¢ÝÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½ºÍÊýÁ¿»ýÔËË㡢ģµÄ¼ÆË㹫ʽ¡¢Èý½Çº¯ÊýµÄƽ·½¹Øϵ¡¢Á½½ÇºÍ²îµÄÕýÏÒ¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð ½â£º¢Ù¡ßf£¨-x£©=lg£¨$\sqrt{{x}^{2}+1}$+x£©£¬-f£¨x£©=-lg£¨$\sqrt{{x}^{2}+1}$-x£©=lg$\frac{1}{\sqrt{{x}^{2}+1}-x}$=lg$\frac{\sqrt{{x}^{2}+1}+x}{£¨\sqrt{{x}^{2}+1£©^{2}-{x}^{2}}}$=lg£¨$\sqrt{{x}^{2}+1}$+x£©£¬
¡àf£¨-x£©=-f£¨x£©£¬
¡àº¯Êýf£¨x£©=lg£¨$\sqrt{{x}^{2}+1}$-x£©ÊÇRÉϵÄÆ溯Êý£®
¹Ê¢ÙÕýÈ·£»
¢Ú°Ñº¯Êýf£¨x£©=2sin2xͼÏóÉÏÿ¸öµãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ3±¶£¬µÃµ½º¯Êýf£¨x£©=2sin$\frac{2}{3}$x£¬È»ºóÔÙÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½µÄº¯Êý½âÎöʽ¿ÉÒÔ±íʾΪg£¨x£©=2sin$\frac{2}{3}$£¨x-$\frac{¦Ð}{6}$£©=2sin£¨$\frac{2}{3}$x-$\frac{¦Ð}{9}$£©£®
¹Ê¢Ú´íÎó£»
¢Ûsin40¡ã£¨tan10¡ã-$\sqrt{3}$£©=sin40¡ã£¨$\frac{sin10¡ã}{cos10¡ã}$-$\sqrt{3}$£©
=-sin40¡ã¡Á$\frac{\sqrt{3}cos10¡ã-sin10¡ã}{cos10¡ã}$=-sin40¡ã¡Á$\frac{2£¨\frac{\sqrt{3}}{2}cos10¡ã-\frac{1}{2}sin10¡ã£©}{cos10¡ã}$=-sin40¡ã¡Á$\frac{2cos40¡ã}{cos10¡ã}$=-$\frac{sin80¡ã}{cos10¡ã}$=-1£®
¹Ê¢Û´íÎó£»
¢ÜÈô´æÔÚʵÊýx1¡¢x2£¬Ê¹µÃ¶ÔÈÎÒâx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬
Ôòf£¨x1£©Îªº¯Êýf£¨x£©µÄ×îСֵ£¬f£¨x2£©Îªº¯Êýf£¨x£©µÄ×î´óÖµ£¬
Ôò|x1-x2|µÄ×îСֵΪ$\frac{T}{2}$=$\frac{1}{2}$¡Á$\frac{2¦Ð}{2}$=$\frac{¦Ð}{2}$£¬
¹Ê¢ÜÕýÈ·£»
¢Ý£º¡ß$\overrightarrow{BA}$•$\overrightarrow{BC}$=-cos18¡ã•2cos63¡ã-cos72¡ã•2cos27¡ã
=-2£¨sin27¡ãcos18¡ã+cos27¡ãsin18¡ã£©=-2sin45¡ã=-$\sqrt{2}$£®
$\overrightarrow{BA}$=$\sqrt{co{s}^{2}18¡ã+si{n}^{2}18¡ã}$=1£¬$\overrightarrow{BC}$=$\sqrt{4co{s}^{2}63¡ã+4co{s}^{2}27¡ã}$=2$\sqrt{si{n}^{2}27¡ã+co{s}^{2}27¡ã}$=2£®
¡àcosB=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|•|\overrightarrow{BC}|}$=$\frac{-\sqrt{2}}{2}$£¬
¡à¡ÏB=135¡ã£®
¹Ê¢ÝÕýÈ·£®
×ÛÉÏËùÊö£¬ÕýÈ·µÄ½áÂÛÊǢ٢ܢݣ®
¹Ê´ð°¸ÊÇ£º¢Ù¢Ü¢Ý£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°µÄÄÚÈÝÖ÷ÒªÊÇÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊÒÔ¼°Èý½Çº¯ÊýµÄͼÏó±ä»»£¬×ۺϿ¼²éÈý½ÇÐεÄÐÔÖʵÄÓ¦Óã®