题目内容
如图,已知|
|=3,|
|=1,
•
=0,∠AOP=
,若
=t
+
,则实数t等于( )
OA |
OB |
OA |
OB |
π |
6 |
OP |
OA |
OB |
分析:由题意可得sin∠AOP=
,求出|
|=2,把
=t
+
平方可得t2=
,再由t>0求出t的值.
|
| ||
|
|
OP |
OP |
OA |
OB |
1 |
3 |
解答:解:由题意可得sin∠AOP=sin
=
=
=
,∴|
|=2.
再由
=t
+
可得
2=t2
2+2t•
•
+
2.
∵
•
=0,∴4=9t2+0+1.
∴t2=
.
由题意可得t>0,故t=
,
故选B.
π |
6 |
|
| ||
|
|
1 | ||
|
|
1 |
2 |
OP |
再由
OP |
OA |
OB |
OP |
OA |
OA |
OB |
OB |
∵
OA |
OB |
∴t2=
1 |
3 |
由题意可得t>0,故t=
| ||
3 |
故选B.
点评:本题主要考查平面向量基本定理及其几何意义,求出|
|=2,是解题的突破口,属于中档题.
OP |
练习册系列答案
相关题目