题目内容
4.已知tanα=-2,tan(α+β)=$\frac{1}{7}$,则tanβ的值为3.分析 直接利用两角和的正切函数,求解即可.
解答 解:tanα=-2,tan(α+β)=$\frac{1}{7}$,
可知tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{1}{7}$,
即$\frac{-2+tanβ}{1+2tanβ}$=$\frac{1}{7}$,
解得tanβ=3.
故答案为:3.
点评 本题考查两角和的正切函数,基本知识的考查.
练习册系列答案
相关题目
14.甲、乙两个养猪场每回出栏的成猪都在90~110公斤之间,重达102公斤的成猪称为优质猪.已知甲、乙两个养猪场每回养猪100头,本回出栏的成猪重量分布如下:
甲养猪场猪重频数分布表
乙养猪场猪重频数分布表
(Ⅰ)分别估计甲养猪场、乙养猪场出栏成猪的优质率;
(Ⅱ)已知乙养猪场出栏一头猪的利润y(单位:百元)与其重量x(单位:公斤)的关系为:y=$\left\{\begin{array}{l}{-2(x<94)}\\{2(94≤x<102)}\\{4(x≥102)}\end{array}\right.$估计乙养猪场平均每出栏一头猪的利润.
甲养猪场猪重频数分布表
猪的重量分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 8 | 20 | 42 | 22 | 8 |
猪的重量分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 4 | 12 | 42 | 32 | 10 |
(Ⅱ)已知乙养猪场出栏一头猪的利润y(单位:百元)与其重量x(单位:公斤)的关系为:y=$\left\{\begin{array}{l}{-2(x<94)}\\{2(94≤x<102)}\\{4(x≥102)}\end{array}\right.$估计乙养猪场平均每出栏一头猪的利润.
12.设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的( )
A. | 充要条件 | B. | 充分不必要条件 | ||
C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
9.设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
16.下列函数中,既不是奇函数,也不是偶函数的是( )
A. | y=x+sin2x | B. | y=x2-cosx | C. | y=2x+$\frac{1}{{2}^{x}}$ | D. | y=x2+sinx |
13.设x∈R,则“x>1“是“x3>1”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
14.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{5}{4}$,且其右焦点为F2(5,0),则双曲线C的方程为( )
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 |