ÌâÄ¿ÄÚÈÝ
10£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©£¬Èç¹û¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐf£¨kx£©=kf£¨x£©£¬£¨k¡Ý2£¬k¡ÊN+£©³ÉÁ¢£¬Ôò³Æf£¨x£©Îªk½×Ëõ·Åº¯Êý£®£¨1£©ÒÑÖªº¯Êýf£¨x£©Îª¶þ½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=1+log${\;}_{\frac{1}{2}}$x£¬Çóf£¨2$\sqrt{2}$£©µÄÖµ£»
£¨2£©ÒÑÖªº¯Êýf£¨x£©Îª¶þ½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=$\sqrt{2x-{x}^{2}}$£¬ÇóÖ¤£ºº¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£»
£¨3£©ÒÑÖªº¯Êýf£¨x£©Îªk½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬k]ʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬1£©£¬Çóf£¨x£©ÔÚ£¨0£¬kn+1]£¨n¡ÊN£©ÉϵÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©¸ù¾Ý¶þ½×Ëõ·Åº¯ÊýµÄ¶¨Ò壬ֱ½Ó´úÈë½øÐÐÇóÖµ¼´¿É£»
£¨2£©¸ù¾Ýº¯ÊýÁãµãµÄ¶¨ÒåºÍÐÔÖÊÅжϺ¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£»
£¨3£©¸ù¾Ýk½×Ëõ·Åº¯Êý³ÉÁ¢µÄÌõ¼þ½¨Á¢Ìõ¼þ¹Øϵ¼´¿ÉÇó³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉ$\sqrt{2}$¡Ê£¨1£¬2]µÃ£¬f£¨$\sqrt{2}$£©=1+1+log${\;}_{\frac{1}{2}}$$\sqrt{2}$=$\frac{1}{2}$¡£¨2·Ö£©
ÓÉÌâÖÐÌõ¼þµÃf£¨2$\sqrt{2}$£©=2f£¨$\sqrt{2}$£©=2¡Á$\frac{1}{2}$=1¡£¨4·Ö£©
£¨2£©µ±x¡Ê£¨2i£¬2i+1]£¨i=0£¬1£¬2£©Ê±£¬$\frac{x}{{2}^{i}}$¡Ê£¨1£¬2]£¬ÒÀÌâÒâ¿ÉµÃ£ºf£¨x£©=2f£¨$\frac{x}{2}$£©=22f£¨$\frac{x}{{2}^{2}}$£©=¡=2if£¨$\frac{x}{{2}^{i}}$£©=2i$\sqrt{2•\frac{x}{{2}^{i}}-£¨\frac{x}{{2}^{i}}£©^{2}}$=$\sqrt{{2}^{i+1}x-{x}^{2}}$£®¡£¨6·Ö£©
·½³Ìf£¨x£©-x=0?$\sqrt{{2}^{i+1}x-{x}^{2}}$=x?x=0»òx=2i£¬0Óë2i¾ù²»ÊôÓÚ£¨2i£¬2i+1]£¨£¨i=0£¬1£¬2£©£©¡£¨8·Ö£©
µ±x¡Ê£¨2i£¬2i+1]£¨£¨i=0£¬1£¬2£©£©Ê±£¬·½³Ìf£¨x£©-x=0ÎÞʵÊý½â£®
×¢Òâµ½£¨1£¬+¡Þ£©=£¨20£¬21]¡È£¨21£¬22]¡È£¨22£¬23£©¡È¡£¬ËùÒÔº¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£®¡£¨10·Ö£©
£¨3£©µ±x¡Ê£¨kj£¬kj+1]£¬j¡ÊZʱ£¬ÓÐ$\frac{x}{{k}^{j}}$¡Ê£¨1£¬k]£¬ÒÀÌâÒâ¿ÉµÃ£ºf£¨x£©=kf£¨$\frac{x}{k}$£©=k2f£¨$\frac{x}{{k}^{2}}$£©=¡=kjf£¨$\frac{x}{{k}^{j}}$£©
µ±x¡Ê£¨1£¬k]ʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬1£©¡£¨12·Ö£©
ËùÒÔµ±x¡Ê£¨kj£¬kj+1]£¬j¡ÊZʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬kj£©£®¡£¨14·Ö£©
ÓÉÓÚ£¨0£¬kn+1]=£¨kn£¬kn+1]¡È£¨kn-1£¬kn]¡È¡¡È£¨k0£¬k]¡È£¨k-1£¬k0]¡È¡£¨16·Ö£©
ËùÒÔº¯Êýf£¨x£©ÔÚ£¨0£¬kn+1]£¨n¡ÊN£©ÉϵÄÈ¡Öµ·¶Î§ÊÇ£º[0£¬kn£©¡È[0£¬kn-1£©¡È¡¡È[0£¬k0£©¡È[0£¬k-1£©¡È¡=[0£¬kn£©£®¡£¨18·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨ÒåµÄÓ¦Óã¬ÕýÈ·Àí½âk½×Ëõ·Åº¯ÊýµÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®
A£® | ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£ºÈô¡°x2=1Ôòx¡Ù1¡± | |
B£® | ¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | |
C£® | ÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬¾ùÓÐx2+x+1£¼0¡± | |
D£® | ÃüÌâ¡°Èôsinx¡Ùsiny£¬Ôòx¡Ùy¡±ÎªÕæÃüÌâ |
A£® | 3 | B£® | 4 | C£® | 7 | D£® | 8 |