题目内容
已知函数f(x)=sin2x+sin xcos x,x∈.(1)求f(x) 的零点;(2)求f(x)的最大值和最小值.
(1)零点为或π(2)最大值为,最小值为-1+
解析
已知函数f(x)=sinωx·sin(-φ)-sin(+ωx)sin(π+φ)是R上的偶函数.其中ω>0,0≤φ≤π,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值.
已知函数. 的部分图象如图所示,其中点是图象的一个最高点.(1)求函数的解析式;(2)已知且,求.
已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
已知函数f(x)=(A>0,>0,)的图象的一部分如下图所示.(1)求函数f(x)的解析式.(2)当x(-6,2)时,求函数g(x)= f(x+2)的单调递增区间.
设函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)在x=处取得最大值2,其图象与x轴的相邻两个交点的距离为.(1)求f(x)的解析式;(2)求函数g(x)=的值域.
已知函数f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期为.(1)求f(x)的解析式.(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.
设平面向量,,函数.(Ⅰ)求函数的值域和函数的单调递增区间; (Ⅱ)当,且时,求的值.
已知3cos2(π+x)+5cos=1,求6sinx+4tan2x-3cos2(π-x)的值.