题目内容

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

【答案】
(1)解:设公差为为d,a1=2,且a2+1,a4+1,a8+1成等比数列,

∴(a4+1)2=(a2+1)(a8+1),

∴(3d+3)2=(3+d)(3+7d),

解得d=3,

∴an=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1;


(2)解:∵数列{bn}满足bn=

∴bn=

∴bnbn+1= =3(

∴b1b2+b2b3+…+bnbn+1=3( + ++ )=3( )=

=

解得n=10,

故正整数n的值为10.


【解析】(1)由a2+1,a4+1,a8+1成等比数列,建立关于d的方程,解出d,即可求数列{an}的通项公式;(2)表示出bn , 利用裂项相消法求出b1b2+b2b3+…+bnbn+1 , 建立关于n的方程,求解即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网