题目内容

已知抛物线y2=2px(p>0)的焦点为F,过F作倾斜角为45°的直线与抛物线交于A、B两点,若线段AB的长为16,则p的值等于
 
分析:抛物线的方程可求得焦点坐标,进而根据斜率表示出直线的方程,与抛物线的方程联立消去y,进而根据韦达定理表示出x1+x2和x1x2,进而利用配方法求得|x1-x2|,利用弦长公式表示出段AB的长求得p.
解答:解:由题意可知过焦点的直线方程为 y=x-
p
2

联立有
y2=2px
y=x-
p
2
?x2-3px+
p2
4
=0

∴x1+x2=3p,x1x2=
p2
4

∴|x1-x2|=
(x1+x2)2-4x1x2
=
(3p)2-4×
p2
4

|AB|=
(1+12)
(3p)2-4×
p2
4
=16
求得p=4
故答案为:2
点评:本题主要考查了抛物线的应用,两点间的距离公式的应用.解题的时候注意利用好韦达定理,设而不求,找到解决问题的途径.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网