题目内容

(05年全国卷Ⅲ理)(12分)

   设两点在抛物线上,的垂直平分线。

(Ⅰ)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;

(Ⅱ)当直线的斜率为2时,求轴上截距的取值范围。

解析:(Ⅰ)两点到抛物线的准线的距离相等,

          ∵抛物线的准线是轴的平行线,,依题意不同时为0

∴上述条件等价于

∴上述条件等价于

即当且仅当时,经过抛物线的焦点

(Ⅱ)设轴上的截距为,依题意得的方程为;过点的直线方程可写为,所以满足方程

        得

  为抛物线上不同的两点等价于上述方程的判别式,即

的中点的坐标为,则

,得,于是

即得轴上截距的取值范围为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网