题目内容

05年全国卷Ⅰ理)(12分)

(Ⅰ)设函数,求的最小值;

(Ⅱ)设正数满足,证明:

      


解析:(Ⅰ)解:对函数求导数:

  

于是

在区间是减函数,

在区间是增函数.

所以时取得最小值,

(Ⅱ)证法一:用数学归纳法证明.

(i)当n=1时,由(Ⅰ)知命题成立.

(ii)假定当时命题成立,即若正数

时,若正数

为正数,且

由归纳假定知

        ①

同理,由可得

    ②

综合①、②两式

即当时命题也成立.

根据(i)、(ii)可知对一切正整数n命题成立.

证法二:

令函数

利用(Ⅰ)知,当

 

对任意

                     .  ①

下面用数学归纳法证明结论.

(i)当n=1时,由(I)知命题成立.

(ii)设当n=k时命题成立,即若正数

 

由①得到

      由归纳法假设

     

      

      即当时命题也成立.

      所以对一切正整数n命题成立.

 

 

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网