题目内容
【题目】如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由
沿棱柱侧面经过棱
到点
的最短路线长为
,设这条最短路线与
的交点为
.
(1)求三棱柱的体积;
(2)证明:平面平面
.
【答案】(1) (2)详见解析
【解析】试题分析:(1)由题意求出棱长,再求出三棱柱ABC-A1B1C1的底面面积,再求出高AA1,即可求出棱柱的体积.(2)连接AD,B1D,平面A1BD内的直线OD垂直平面A1ABB1内的两条相交直线A1B,AB1,即可证明平面A1BD⊥平面A1ABB1.
试题解析:
(1)如图,将侧面绕棱
旋转
使其与侧面
在同一平面上,点
运动到点
的位置,连接
,则
就是由点
沿棱柱侧面经过棱
到点
的最短路线.
设棱柱的棱长为,则
,
∵,∴
为
的中点,
在中,由勾股定理得
,
即解得
,
∵,
∴.
(2)设与
的交点为
,连结
,
∵,
∴,∴
,
∵,∴
平面
.
又∵平面
,∴平面
平面
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:
(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注: