ÌâÄ¿ÄÚÈÝ
(±¾Ð¡ÌâÂú·Ö18·Ö)ÒÑÖªÊýÁУûan£ý¡¢£ûbn£ý¡¢£ûcn£ýµÄͨÏʽÂú×ãbn=an+1-an£¬cn=bn+1-bn£¨n¡ÊN*?£©£¬ÈôÊýÁУûbn£ýÊÇÒ»¸ö·ÇÁã³£ÊýÁУ¬Ôò³ÆÊýÁУûan£ýÊÇÒ»½×µÈ²îÊýÁУ»ÈôÊýÁУûcn£ýÊÇÒ»¸ö·ÇÁã³£ÊýÁУ¬Ôò³ÆÊýÁУûan£ýÊǶþ½×µÈ²îÊýÁÐ?(1)ÊÔд³öÂú×ãÌõ¼þa£±£½£±,b1=1£¬cn=1£¨n¡ÊN*?£©µÄ¶þ½×µÈ²îÊýÁУûan£ýµÄÇ°ÎåÏ(2)ÇóÂú×ãÌõ¼þ(1)µÄ¶þ½×µÈ²îÊýÁУûan£ýµÄͨÏʽan£»(3)ÈôÊýÁУûan£ýÊ×Ïîa£±£½£²£¬ÇÒÂú×ãcn-bn+1+3an£½-2n+1£¨n¡ÊN*?£©£¬ÇóÊýÁУûan£ýµÄͨÏʽ
£¨1£©a1=1£¬a2=2£¬a3=4£¬a4=7£¬a5=11£¨2£©an£½(n2-n+2)/2 £¨3£©an=4n-2n
½âÎö:
£¨1£©a1=1£¬a2=2£¬a3=4£¬a4=7£¬a5=11-----4·Ö
£¨2£©ÒÀÌâÒâbn+1-bn=cn=1£¬n=1£¬2£¬3£¬¡
ËùÒÔbn=£¨bn-bn-1£©£«£¨bn-1-bn-2£©£«£¨bn-2-bn-3£©£«¡+£¨b2-b1£©+b1=1+1+1+¡+1=n ---6·Ö
ÓÖan+1-an=bn£½n£¬n=1£¬2£¬3£¬¡ËùÒÔan£½£¨an-an-1£©£«£¨an-1-an-2£©£«£¨an-2-an-3£©£«¡+£¨a2-a1£©£«a£±
=£¨n-1£©+£¨n-2£©+¡+2+1+1=n£¨n-1£©/2+1=(n2-n+2)/2 --10·Ö
£¨3£©ÓÉÒÑÖªcn-bn+1£«£³an= -2n+1£¬¿ÉµÃbn+1-bn-bn+1+3an£½-2n+1£¬¼´bn-3an=2n+1£¬¡àan+1=4an+2n+1£® -12·Ö
½â·¨Ò»£ºÕûÀíµÃ£ºan+1£«£²n+1=4£¨an+2n£©£¬-------15·Ö
Òò¶øÊýÁУûan+2n£ýÊÇÊ×ÏîΪa1+2=4£¬¹«±ÈΪ4µÄµÈ±ÈÊýÁУ¬
¡àan+2n£½4¡¤4n-1£½£´n£¬¼´an=4n-2n£®£¨18·Ö£©
½â·¨¶þ£ºÔÚµÈʽan+1£½4an+2n+1Á½±ßͬʱ³ýÒÔ2n+1µÃ£ºan+1/£²n+1=2¡¤an/2n£«£±£®----15·Ö
Áîkn=an/2n£¬Ôòkn+1£½£²kn+1£¬¼´kn+1£«£±£½£²£¨kn+1£©
¹ÊÊýÁУûkn+1£ýÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁÐËùÒÔkn+1=2¡¤2n-1£½£²n£¬¼´kn=2n-1£®
¡àan=2nkn=2n£¨£²n-1£©=4n-2n£® -------18·Ö
½â·¨Èý£º¡ßa£±£½£²£¬¡àa2£½£±£²£½£²£²¡Á£¨2£²-1£©£¬a3£½£µ£¶£½£²£³¡Á£¨£²£³-1£©£¬a4£½£³£²£½£²£´¡Á£¨£²£´-1£©
²ÂÏ룺an=2n£¨2n-1£©£½£´n-2n£® ------15·Ö
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏ£º£¨i£©µ±n=1ʱ£¬a£±£½£²£½4-2£¬²ÂÏë³ÉÁ¢£»
£¨ii£©¼ÙÉèn=kʱ£¬²ÂÏë³ÉÁ¢£¬¼´ak=4k-2k£®ÄÇôµ±n=k+1ʱ£¬ak+1£½£´ak+2k+1£½£´£¨4k-2k£©£«£²k+1=4 k+1-2 k+1£¬½áÂÛÒ²³ÉÁ¢¡àÓÉ£¨i£©¡¢£¨ii£©¿ÉÖª£¬an=4n-2n£®----18·Ö