题目内容
【题目】的内角的对边分别为,已知.
(1)求;
(2)若,求的面积.
【答案】(1);(2).
【解析】
(1)由正弦定理得 sinA=sinBcosC+sinCsinB,从而cosBsinC=sinCsinB,进而tanB=,由此能求出B.(2)利用余弦定理得a,由此能求出△ABC的面积.
(1)由a=bcosC+csinB及正弦定理,可得:sinA=sinBcosC+sinCsinB,①
又sinA=sin(π﹣B﹣C)=sin(B+C)=sinBcosC+cosBsinC②,由①②得sinCsinB=cosBsinC,又三角形中,sinC≠0,所以sinB=cosB,又B∈(0,π),所以B=.
(2)△ABC的面积为S==.由余弦定理,b2=a2+c2﹣2accosB,得4=a2+c2﹣,又,得c2=4c=2,,所以△ABC的面积为.
【题目】某单位员工人参加“学雷锋”志愿活动,按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.
(1)下表是年龄的频率分布表,求正整数的值;
区间 | |||||
人数 |
(2)现在要从年龄较小的第组中用分层抽样的方法抽取人,年龄在第组抽取的员工的人数分别是多少?
(3)在(2)的前提下,从这人中随机抽取人参加社区宣传交流活动,求至少有人年龄在第组的概率.
【题目】某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”. 参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:
等级 | 优秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
优秀 | 男生 | 女生 | 总计 |
非优秀 | |||
总计 |
(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.