题目内容
【题目】定义在R上的函数f(x),g(x)满足:对于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).当x<0时,f′(x)<0,g′(x)>0,则当x>0时,有( )
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0
【答案】B
【解析】解:由题意,f(x)是奇函数,g(x)是偶函数, ∵当x<0时,f′(x)<0,g′(x)>0,
∴当x<0时,f(x)单调递减,g(x)单调递增,
∴当x>0时,f(x)单调递减,g(x)单调递减,
即当x>0时,f′(x)<0,g′(x)<0,
故选:B.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
练习册系列答案
相关题目
【题目】某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:
理财金额 | 万元 | 万元 | 万元 |
乙理财相应金额的概率 | |||
丙理财相应金额的概率 |
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为元,求的分布列与数学期望.