题目内容
15.已知抛物线的准线方程x=$\frac{1}{2}$,则抛物线的标准方程为( )A. | x2=2y | B. | x2=-2y | C. | y2=x | D. | y2=-2x |
分析 由抛物线的准线方程求得p,进一步得到抛物线方程.
解答 解:∵抛物线的准线方程x=$\frac{1}{2}$,
可知抛物线为焦点在x轴上,且开口向左的抛物线,
且$\frac{p}{2}=\frac{1}{2}$,则p=1.
∴抛物线方程为y2=-2x.
故选:D.
点评 本题考查了抛物线的简单性质,考查了抛物线方程的求法,是基础题.
练习册系列答案
相关题目
5.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点为(2,0),则椭圆的短轴长为( )
A. | 2 | B. | 4 | C. | 6 | D. | 4$\sqrt{3}$ |
6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若$\overrightarrow{AP}$=$\sqrt{2}$$\overrightarrow{PB}$,则椭圆的离心率是( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
7.某地近几年粮食需求量逐年上升,如表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:$\widehat{b}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)({y}_{1}-y)}{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}{y}_{1})-nxy}{\underset{\stackrel{n}{∑}}{n+1}{x}_{1}^{2}-n{x}^{2}}$,$\widehat{a}$=$\widehat{y}-\widehat{b}x$)
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
年需求量(万吨) | 257 | 276 | 286 | 298 | 318 |
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:$\widehat{b}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)({y}_{1}-y)}{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}-x)^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{n+1}({x}_{1}{y}_{1})-nxy}{\underset{\stackrel{n}{∑}}{n+1}{x}_{1}^{2}-n{x}^{2}}$,$\widehat{a}$=$\widehat{y}-\widehat{b}x$)
4.己知C是半径为1、圆心角为60°的圆弧上的动点,如图,若$\overrightarrow{OC}$=x$\overline{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,则x+y的最大值是( )
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | $\frac{\sqrt{3}}{2}$ |