题目内容

【题目】若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(
A.l与l1 , l2都不相交
B.l与l1 , l2都相交
C.l至多与l1 , l2中的一条相交
D.l至少与l1 , l2中的一条相交

【答案】D
【解析】解:A.l与l1 , l2可以相交,如图: ∴该选项错误;
B.l可以和l1 , l2中的一个平行,如上图,∴该选项错误;
C.l可以和l1 , l2都相交,如下图:
,∴该选项错误;
D.“l至少与l1 , l2中的一条相交”正确,假如l和l1 , l2都不相交;
∵l和l1 , l2都共面;
∴l和l1 , l2都平行;
∴l1∥l2 , l1和l2共面,这样便不符合已知的l1和l2异面;
∴该选项正确.
故选D.
可以画出图形来说明l与l1 , l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1 , l2都不相交,这样可推出和l1 , l2异面矛盾,这样便说明D正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网