ÌâÄ¿ÄÚÈÝ
17£®Ëæ×Å˽¼Ò³µµÄÖð½¥Ôö¶à£¬¾ÓÃñСÇø¡°Í£³µÄÑ¡±ÎÊÌâÈÕÒæÍ»³ö£®±¾ÊÐij¾ÓÃñСÇøΪ»º½â¡°Í£³µÄÑ¡±ÎÊÌ⣬Ä⽨ÔìµØÏÂÍ£³µ¿â£¬½¨ÖþÉè¼ÆʦÌṩÁ˸õØÏÂÍ£³µ¿âµÄÈë¿ÚºÍ½øÈëºóµÄÖ±½ÇתÍä´¦µÄƽÃæÉè¼ÆʾÒâͼ£®£¨1£©°´¹æ¶¨£¬µØÏÂÍ£³µ¿âƵÀ¿ÚÉÏ·½ÒªÕÅÌùÏ޸߱êÖ¾£¬ÒÔ±ã¸æ֪ͣ³µÈ˳µÁ¾ÄÜ·ñ°²È«Ê»È룬Ϊ±êÃ÷Ï޸ߣ¬ÇëÄã¸ù¾Ý¸Ãͼ1ʾÊý¾Ý¼ÆËãÏÞ¶¨¸ß¶ÈCDµÄÖµ£®£¨¾«È·µ½0.1m£©
£¨ÏÂÁÐÊý¾ÝÌṩ²Î¿¼£ºsin20¡ã=0.3420£¬cos20¡ã=0.9397£¬tan20¡ã=0.3640£©
£¨2£©ÔÚ³µ¿âÄÚÓÐÒ»ÌõÖ±½Ç¹ÕÍä³µµÀ£¬³µµÀµÄƽÃæͼÈçͼ2ʾ£¬Éè¡ÏPAB=¦È£¨rad£©£¬³µµÀ¿íΪ3Ã×£¬ÏÖÓÐÒ»Á¾×ª¶¯Áé»îµÄСÆû³µ£¬Æäˮƽ½ØÃæͼΪ¾ØÐΣ¬ËüµÄ¿íΪ1.8Ã×£¬³¤Îª4.5Ã×£¬Îʴ˳µÊÇ·ñÄÜ˳Àûͨ¹ý´ËÖ±½Ç¹ÕÍä³µµÀ£¿
·ÖÎö £¨1£©ÔÚRt¡÷ABEÖУ¬Çó³öBEµÄÖµ£¬ÔٵóöCEµÄÖµ£¬¼ÆËã³öCD¼´¿É£»
£¨2£©¸ù¾ÝͼÐΣ¬½áºÏÈý½Çº¯ÊýµÄÐÔÖÊ£¬±íʾ³öEF¡¢DEÓëABµÄ³¤£¬¼ÆËãABµÄ×îСֵ¼´¿ÉÅжÏСÆû³µÊÇ·ñÄÜͨ¹ýÖ±½ÇÍäµÀ£®
½â´ð ½â£º£¨1£©ÔÚ¡÷ABEÖУ¬¡ÏABE=90¡ã£¬¡ÏBAE=20¡ã£¬
¡àtan¡ÏBAE=$\frac{BE}{AB}$£¬
ÓÖAB=10£¬
¡àBE=AB•tan¡ÏBAE=10tan20¡ã¡Ö3.6m£¬
¡ßBC=0.6£¬¡àCE=BE-BC=3m£¬
ÔÚ¡÷CEDÖУ¬¡ßCD¡ÍAE£¬¡ÏECD=¡ÏBAE=20¡ã£¬
¡àcos¡ÏECD=$\frac{CD}{CE}$£¬¡àCD=CE•cos¡ÏECD=3cos20¡ã¡Ö3¡Á0.94¡Ö2.8m£®
¹Ê´ð°¸Îª2.8m£®
£¨2£©ÑÓ³¤CDÓëÖ±½Ç×ßÀȵıßÏཻÓÚE¡¢F£¬
ÔòEF=OE+OF=$\frac{3}{cos¦È}$+$\frac{3}{sin¦È}$£¬ÆäÖÐ0£¼¦È£¼$\frac{¦Ð}{2}$£¬
¡àDE=$\frac{1.8}{tan¦È}$£¬
CF=BC•tan¦È=1.8tan¦È£»
ÓÖ¡ßAB=DC=EF-£¨DE+CF£©£¬
¡àf£¨¦È£©=$\frac{3}{cos¦È}$+$\frac{3}{sin¦È}$-1.8£¨tan¦È+$\frac{1}{tan¦È}$£©
=$\frac{£¨sin¦È+cos¦È£©-1.8}{sin¦Ècos¦È}$£¬ÆäÖÐ0£¼¦È£¼$\frac{¦Ð}{2}$£»
Éèsin¦È+cos¦È=t£¬Ôòt=$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬
¡à1£¼t¡Ü$\sqrt{2}$
¡ßsin¦Ècos¦È=$\frac{{t}^{2}-1}{2}$£¬
¡àf£¨¦È£©=g£¨t£©=$\frac{6t-3.6}{{t}^{2}-1}$£¬
¡àg¡ä£¨t£©=-$\frac{6£¨t-0.6£©^{2}+3.84}{£¨{t}^{2}-1£©^{2}}$£»
ÓÖ¡ß1£¼t¡Ü$\sqrt{2}$£¬
¡àg¡ä£¨t£©£¼0ºã³ÉÁ¢£»
¡àg£¨t£©=$\frac{6t-3.6}{{t}^{2}-1}$ÔÚt¡Ê£¨1£¬$\sqrt{2}$]ÉÏÊǼõº¯Êý£¬
¡àg£¨t£©min=g£¨$\sqrt{2}$£©=6$\sqrt{2}$-3.6£¾4.5£»
¡àСÆû³µÄܹ»Ë³Àûͨ¹ýÖ±½Ç¹ÕÍä³µµÀ£®
µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄͼÏóÓëÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˽âÈý½ÇÐεÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
A£® | Ä£ÐÍ1£¨Ïà¹ØÖ¸Êý2Ϊ0.97£© | B£® | Ä£ÐÍ2£¨Ïà¹ØÖ¸ÊýR2Ϊ0.89£© | ||
C£® | Ä£ÐÍ3£¨Ïà¹ØÖ¸ÊýR2Ϊ0.56 £© | D£® | Ä£ÐÍ4£¨Ïà¹ØÖ¸ÊýR2Ϊ0.45£© |