题目内容
【题目】在正方体中,、分别为、的中点,,,如图.
(1)若交平面于点,证明:、、三点共线;
(2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.
【答案】(1)证明见解析;(2)存在,且.
【解析】
(1)先得出为平面与平面的交线,然后说明点是平面与平面的公共点,即可得出、、三点共线;
(2)设,过点作交于点,然后证明出平面平面,再确定出点在上的位置即可.
(1),平面,平面,所以,点是平面和平面的一个公共点,同理可知,点也是平面和平面的公共点,则平面和平面的交线为,
平面,平面,所以,点也是平面和平面的公共点,由公理三可知,,因此,、、三点共线;
(2)如下图所示:
设,过点作交于点,
下面证明平面平面.
、分别为、的中点,,
平面,平面,平面.
又,平面,平面,平面,
,、平面,因此,平面平面.
下面来确定点的位置:
、分别为、的中点,所以,,且,则点为的中点,
易知,即,又,所以,四边形为平行四边形,,
四边形为正方形,且,则为的中点,所以,点为的中点,,
因此,线段上是否存在点,且时,平面平面.
练习册系列答案
相关题目