题目内容

选做题:不等式选讲
(Ⅰ) 设a1,a2,a3均为正数,且a1+a2+a3=m,求证
1
a1
+
1
a2
+
1
a3
9
m

(Ⅱ) 已知a,b都是正数,x,y∈R,且a+b=1,求证:ax2+by2≥(ax+by)2
分析:(I)根据基本不等式的性质可分别求得a1+a2+a3
1
a1
+
1
a2
+
1
a3
的最小值,两式相乘即可求得 (
1
a1
+
1
a2
+
1
a3
)•m
的最小值,整理后原式得证.
(II)ax2+by2乘以一个:“1=a+b”后得:(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2
解答:证明:(I)∵(
1
a1
+
1
a2
+
1
a3
)•m
=(a1+a2+a3)(
1
a1
+
1
a2
+
1
a3
)
≥3
3a1a2a3
•3
3
1
a1
1
a2
1
a3
=9

当且仅当 a1=a2=a3=
m
3
时等号成立.
又∵m=a1+a2+a3>0,
1
a1
+
1
a2
+
1
a3
9
m

(II)ax2+by2=(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2.…(10分)
点评:本题主要考查了基本不等式的应用.解题的时候要特别注意等号成立的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网