ÌâÄ¿ÄÚÈÝ
±¾ÌâÉèÓУ¨1£©£¨2£©£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£®×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©ÒÑÖª¾ØÕóM=
£¬N=
£¬ÇÒMN=
£¬
£¨¢ñ£©ÇóʵÊýa£¬b£¬c£¬dµÄÖµ£»£¨¢ò£©ÇóÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任ϵÄÏñµÄ·½³Ì£®
£¨2£©ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2
sin¦È£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»£¨¢ò£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ(3£¬
)£¬
Çó|PA|+|PB|£®
£¨3£©ÒÑÖªº¯Êýf£¨x£©=|x-a|£®
£¨¢ñ£©Èô²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-1¡Üx¡Ü5}£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èôf£¨x£©+f£¨x+5£©¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨1£©ÒÑÖª¾ØÕóM=
|
|
|
£¨¢ñ£©ÇóʵÊýa£¬b£¬c£¬dµÄÖµ£»£¨¢ò£©ÇóÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任ϵÄÏñµÄ·½³Ì£®
£¨2£©ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
|
5 |
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»£¨¢ò£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ(3£¬
5 |
Çó|PA|+|PB|£®
£¨3£©ÒÑÖªº¯Êýf£¨x£©=|x-a|£®
£¨¢ñ£©Èô²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-1¡Üx¡Ü5}£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èôf£¨x£©+f£¨x+5£©¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨1£©Ñ¡ÐÞ1£º£¨¢ñ£©ÓÉÌâÉèµÃ
£¬½âµÃ
£»
£¨¢ò£©ÒòΪ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任½«Ö±Ïß±ä³ÉÖ±Ïߣ¨»òµã£©£¬ËùÒÔ¿ÉÈ¡Ö±Ïßy=3xÉϵÄÁ½£¨0£¬0£©£¬£¨1£¬3£©£¬
ÓÉ
=
£¬
=
£¬
µÃµã£¨0£¬0£©£¬£¨1£¬3£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄ±ä»»ÏµÄÏßµÄÏñÊÇ£¨0£¬0£©£¬£¨-2£¬2£©£¬
´Ó¶øÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任ϵÄÏñµÄ·½³ÌΪy=-x£®
£¨2£©Ñ¡ÐÞ2£º£¨¢ñ£©ÓɦÑ=2
sin¦ÈµÃx2+y2-2
y=0£¬¼´x2+(y-
)2=5£®
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ(3-
t)2+(
t)2=5£¬
¼´t2-3
t+4=0£¬
ÓÉÓÚ¡÷=(3
)2-4¡Á4=2£¾0£¬
¹Ê¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½Êµ¸ù£¬
ËùÒÔ
£¬
ÓÖÖ±Ïßl¹ýµãP£¨3£¬
£©£¬
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º
|PA|+|PB|=|t1|+|t2|=t1+t2=3
£®
£¨3£©Ñ¡ÐÞ3£º£¨¢ñ£©ÓÉf£¨x£©¡Ü3µÃ|x-a|¡Ü3£¬½âµÃa-3¡Üx¡Üa+3£¬
ÓÖÒÑÖª²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-1¡Üx¡Ü5}£¬
ËùÒÔ
£¬½âµÃa=2£®
£¨¢ò£©µ±a=2ʱ£¬f£¨x£©=|x-2|£¬
Éèg£¨x£©=f£¨x£©+f£¨x+5£©£¬
ÓÚÊÇg£¨x£©=|x-2|+|x+3|=
£¬
ËùÒÔ£¬µ±x£¼-3ʱ£¬g£¨x£©£¾5£»
µ±-3¡Üx¡Ü2ʱ£¬g£¨x£©£¾5£»
µ±x£¾2ʱ£¬g£¨x£©£¾5£®
|
|
£¨¢ò£©ÒòΪ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任½«Ö±Ïß±ä³ÉÖ±Ïߣ¨»òµã£©£¬ËùÒÔ¿ÉÈ¡Ö±Ïßy=3xÉϵÄÁ½£¨0£¬0£©£¬£¨1£¬3£©£¬
ÓÉ
|
|
|
|
|
|
µÃµã£¨0£¬0£©£¬£¨1£¬3£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄ±ä»»ÏµÄÏßµÄÏñÊÇ£¨0£¬0£©£¬£¨-2£¬2£©£¬
´Ó¶øÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任ϵÄÏñµÄ·½³ÌΪy=-x£®
£¨2£©Ñ¡ÐÞ2£º£¨¢ñ£©ÓɦÑ=2
5 |
5 |
5 |
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ(3-
| ||
2 |
| ||
2 |
¼´t2-3
2 |
ÓÉÓÚ¡÷=(3
2 |
¹Ê¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½Êµ¸ù£¬
ËùÒÔ
|
ÓÖÖ±Ïßl¹ýµãP£¨3£¬
5 |
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º
|PA|+|PB|=|t1|+|t2|=t1+t2=3
2 |
£¨3£©Ñ¡ÐÞ3£º£¨¢ñ£©ÓÉf£¨x£©¡Ü3µÃ|x-a|¡Ü3£¬½âµÃa-3¡Üx¡Üa+3£¬
ÓÖÒÑÖª²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-1¡Üx¡Ü5}£¬
ËùÒÔ
|
£¨¢ò£©µ±a=2ʱ£¬f£¨x£©=|x-2|£¬
Éèg£¨x£©=f£¨x£©+f£¨x+5£©£¬
ÓÚÊÇg£¨x£©=|x-2|+|x+3|=
|
ËùÒÔ£¬µ±x£¼-3ʱ£¬g£¨x£©£¾5£»
µ±-3¡Üx¡Ü2ʱ£¬g£¨x£©£¾5£»
µ±x£¾2ʱ£¬g£¨x£©£¾5£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿