题目内容

【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣2,2]
B.
C.
D.

【答案】A
【解析】解:根据题意,函数f(x)= 的图象如图:

令g(x)=| +a|,其图象与x轴相交与点(﹣2a,0),
在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,
若不等式f(x)≥| +a|在R上恒成立,则函数f(x)的图象在
g(x)上的上方或相交,
则必有f(0)≥g(0),
即2≥|a|,
解可得﹣2≤a≤2,
故选:A.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网