题目内容
【题目】已知函数,若函数在区间内恰好有奇数个零点,则实数k的所有取值之和为__________.
【答案】
【解析】
讨论0<x≤时与<x<π时函数解析式,令k=sinx+cosx﹣4sinxcosx,换元,根据二次函数的单调性即可得出答案.
解:(1)当0<x≤时,设k=sinx+cosx﹣4sinxcosx,
令t=sinx+cosx=sin(x+),则t∈[1,],
k=t﹣2(t2﹣1)=﹣2t2+ t+2,t∈[1,]为单调函数,
则可知当t=1时,即k=1时,一解;
当t=时,即k=时,一解;
当1<t<时,即﹣2<k<1时两解;
(2)当<x<π时,设k=sinx﹣cosx﹣4sinxcosx,
令t=sinx﹣cosx=sin(x﹣),则t∈(1,],
k=t+2(t2﹣1),t∈(1,]也为单调函数,
则可知当1<t<时,即1<k<2+时两解,
当t=时,即k=时一解,
综上:k=1或k=﹣2或k=,
故所有k的和为.
故答案为:.
练习册系列答案
相关题目