题目内容
在区间[-π,π]内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )
A.1- | B.1- | C.1- | D.1- |
B
函数f(x)=x2+2ax-b2+π2有零点,需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b∈[-π,π],建立平面直角坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,
所求事件的概率为P=,故选B.
所求事件的概率为P=,故选B.
练习册系列答案
相关题目