题目内容
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=
(Ⅰ)求角B的大小;(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.









(Ⅰ)B=
.(Ⅱ)k=
.


试题分析:(Ⅰ)由条件



得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,即

又由余弦定理



(Ⅱ)










=-




而0<A<




点评:此类问题综合性强,要求学生熟练掌握有关正余弦定理及其变形的运用外,还要灵活运用三角函数的性质求最值

练习册系列答案
相关题目