题目内容

【题目】在△ABC所在的平面内,点P0、P满足 = ,且对于任意实数λ,恒有 ,则(
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC

【答案】C
【解析】解:∵ = ,∴P0、P、A、B 四点共线,
以AB所在的直线为x轴,以AB的中垂线为y轴,建立直角坐标系,设AB=4,C(a,b),P(x,0),
则A(﹣2,0),B(2,0),P0(1,0),
∵恒有 ,∴(2﹣x,0)(a﹣x,b)≥(1,0)(a﹣1,b)恒成立,
即(2﹣x)(a﹣x)≥a﹣1恒成立,
即 x2﹣(a+2)x+a+1≥0 恒成立,∴判别式△=(a+2)2﹣4(a+1)≤0,
解得a2≤0,∴a=0,即点C在AB的垂直平分线上,∴CA=CB,
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网