题目内容

【题目】已知椭圆的离心率为,其左、右焦点分别为,点为坐标平面内的一点,且为坐标原点.

1)求椭圆的方程;

2)设为椭圆的左顶点,是椭圆上两个不同的点,直线的倾斜角分别为,且.证明:直线恒过定点,并求出该定点的坐标,

【答案】1;(2)证明见解析,定点.

【解析】

1)设点坐标为,运用两点间的距离公式和向量数量积的坐标表示,以及椭圆的离心率公式,解方程可得,进而得到椭圆方程;

2)设,判断直线的斜率不存在不成立,设直线的方程为,联立椭圆方程,运用判别式大于0,以及根与系数的关系,结合直线的斜率公式,化简整理,结合直线方程和恒过定点的求法,可得结果.

解(1)设点坐标为

由题意得

解得..

,∴

∴所求椭圆的方程为:

2)由题可知直线的斜率存在,则设直线方程为坐标为

解方程组

又由,∴

设直线斜率分别为,则

即:

化简得:

得:,或

时,,过点(-20),不合题意(舍去)

时,,过点

∴直线恒过定点.

练习册系列答案
相关题目

【题目】年,某省将实施新高考,年秋季入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中语文、数学、外语三科为必考科目,满分各分,另外,考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每科目满分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取n名学生进行调查.

1)已知抽取的n名学生中含女生人,求n的值及抽取到的男生人数;

2)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下面表格是根据调查结果得到的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“历史”

总计

男生

10

女生

30

总计

3)在抽取到的名女生中,在(2)的条件下,按选择的科目进行分层抽样,抽出名女生,了解女生对“历史”的选课意向情况,在这名女生中再抽取人,求这人中选择“历史”的人数为人的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网